應對初中數學考試:所有題型考試技巧全奉上

陪讀媽媽課堂 發佈 2021-08-03T08:19:50.387991+00:00

很多同學,尤其是成績中等的孩子,在做數學題的時候往往有點想法但又不知道具體該怎麼著手,出現這個問題很重要的一個原因就是不懂解題技。因此 ,今天孫老師特地給大家帶來初中數學解題方法總結,希望家長們一定要轉給孩子,讓孩子好好琢磨下,然後運用到實際解題中!選擇題的解法1.


很多同學,尤其是成績中等的孩子,在做數學題的時候往往有點想法但又不知道具體該怎麼著手,出現這個問題很重要的一個原因就是不懂解題技。
因此 ,今天孫老師特地給大家帶來初中數學解題方法總結,希望家長們一定要轉給孩子,讓孩子好好琢磨下,然後運用到實際解題中!


選擇題的解法
1.直接法:根據選擇題的題設條件,通過計算、推理或判斷,,最後得到題目的所求。
2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值範圍有關;
在解這類選擇題時,可以考慮從取值範圍內選取某幾個特殊值,代入原命題進行驗證,然後淘汰錯誤的,保留正確的。
3.淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4.逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既採用「走一走、瞧一瞧」的策略;
每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全部淘汰掉了。
5.數形結合法:根據數學問題的條件和結論之間的內在聯繫,既分析其代數含義,又揭示其幾何意義;

使數量關係和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。


常用的數學思想方法
1.數形結合思想:就是根據數學問題的條件和結論之間的內在聯繫,既分析其代數含義,又揭示其幾何意義;
使數量關係和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。
2.聯繫與轉化的思想:事物之間是相互聯繫、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯繫,可以相互轉化的。
在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3.分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查;

這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4.待定係數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。
為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。
5.配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。
配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
6.換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。
換元法可以把一個較為複雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7.分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;
則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」
8.綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為「由因導果」
9.演繹法:由一般到特殊的推理方法。
10.歸納法:由一般到特殊的推理方法。
11.類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;
根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。
類比法既可能是特殊到特殊,也可能一般到一般的推理。


函數、方程、不等式
常用的數學思想方法:
①數形結合的思想方法。
②待定係數法。

③配方法。
④聯繫與轉化的思想。
⑤圖像的平移變換。

證明角的相等
1.對頂角相等。
2.角(或同角)的補角相等或餘角相等。
3.兩直線平行,同位角相等、內錯角相等。
4.凡直角都相等。
5.角平分線分得的兩個角相等。
6.同一個三角形中,等邊對等角。
7.等腰三角形中,底邊上的高(或中線)平分頂角。
8.平行四邊形的對角相等。
9.菱形的每一條對角線平分一組對角。
10.等腰梯形同一底上的兩個角相等。
11.關係定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所 對的圓心角相等。
12.圓內接四邊形的任何一個外角都等於它的內對角。
13.同弧或等弧所對的圓周角相等。
14.弦切角等於它所夾的弧對的圓周角。
15.同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。
16.全等三角形的對應角相等。
17.相似三角形的對應角相等。
18.利用等量代換。
19.利用代數或三角計算出角的度數相等
20.切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。


證明直線的平行或垂直
1.證明兩條直線平行的主要依據和方法:
①定義、在同一平面內不相交的兩條直線平行。
②平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。
③平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。
④平行四邊形的對邊平行。
⑤梯形的兩底平行。
⑥三角形(或梯形)的中位線平行與第三邊(或兩底)
⑦一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。
2.證明兩條直線垂直的主要依據和方法:
①兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。
②直角三角形的兩直角邊互相垂直。
③三角形的兩個銳角互余,則第三個內角為直角。

④三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。
⑤三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。
⑥三角形(或多邊形)一邊上的高垂直於這邊。
⑦等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。
⑧矩形的兩臨邊互相垂直。
⑨菱形的對角線互相垂直。
⑩平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。
⑪半圓或直徑所對的圓周角是直角。
⑫圓的切線垂直於過切點的半徑。
⑬相交兩圓的連心線垂直於兩圓的公共弦。

關鍵字:

最近⋯異性緣變很好耶❤️

2021-11-09T04:00:14.115848+00:00

不知道是不是換這了個新的棉花沐浴露的關係

身邊的人都說我聞起來有柔柔的味道(會激起保護慾)
>>https://www.cashin.tw/product/000000000034171

洗完有種淡淡的香味
要靠很近很近才聞得到😳
不像有的味道很化學那種❌❌
更重要的是皮膚變得嫩嫩的
而且洗完澡不擦乳液
也會覺得肌膚很Q彈保濕

 

 

棉花到底是什麼味道呢~
我覺得很像衣服曬完太陽的香香味道
或是狗狗洗完澡吹乾的味道
就是很療癒的味道就對了XD
>>https://www.cashin.tw/product/000000000034171
現在買還多送一瓶沐浴露💯

 

商品資訊

 ▼韓妞維持熱戀的秘訣大公開!!▼  

⇢用香味喚醒他的激情 不自覺一直想妳

 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍

\穿在身上的香水 純潔果香沐浴露誕生/

 榮獲韓國男性最有好感的香味 NO.1🥇

 

https://www.cashin.tw/product/000000000034171